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COMPARISONS OF TVD SCHEMES FOR TURBULENT
TRANSONIC PROJECTILE AERODYNAMICS
COMPUTATIONS WITH A TWO-EQUATION MODEL
OF TURBULENCE
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SUMMARY

The development of a computer program to solve the axisymmetric full Navier-Stokes equations with k—
two-equation model of turbulence using various total variation diminishing (TVD) schemes is the primary
interest of this study. The computations are performed for the turbulent, transonic, viscous flow over
a projectile with/without supporting sting at zero angle of attack. The predicted results, as well as the
convergence characteristics, by various TVD schemes are compared with each other. The results show that
the TVD schemes of higher-order accuracy do have influence on the regions of high gradients such as shock,
base corner and base flow. However, the schemes of third-order accuracy do not necessarily improve the
agreement with measured data (which is not available on the base) than that of second-order accuracy, but
surely generate apparent different result of base flow. The supporting sting on the projectile base will
complicate the base flow and the existence of the sting will slightly shift the shock location and slightly
change the flow field after the shock. More iteration steps are needed to get the converged results in the
computation for the projectile with sting.

KEY worDS TVD schemes Full Navier-Stokes equation Two-equation model Transonic turbulent flow
Projectile aerodynamics Recirculation flow

INTRODUCTION

Turbulence modelling in the calculation of aerodynamic behaviour of projectiles is an important
issue. The conventional Navier—Stokes solvers employ the algebraic eddy viscosity model such as
Baldwin--Lomax model,' which limits the applicability of Navier-Stokes solver, especially for
complex flows. Two equation models of turbulence are very popular in solving complex,
incompressible, turbulent flows in various engineering applications. In 1983, Coakley? extended
these models for flows past aerofoil at angle of attack, later on, numerous investigations®~°
applied the k—¢ turbulence model of similar forms to flows past axisymmetric bump, axisymmetric
ramp, acrofoil/wing, cascade, flat plate, compressible corner and backward facing step. The
predictions were in good agreement with experiments. In 1985, Sahu and Danberg'® employed
the k-¢ two-equation model of turbulence to compute the turbulent flow over projectiles. The
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flowfield over projectiles is a combination of turbulent boundary layer and base flow and the
governing equation set is stiff and is difficult to achieve convergence. Therefore, they used a grid
system of extended boattail to skip the base flow computation in their work.

In recent years, several computational schemes have been developed to solve the
Navier—Stokes equations. Total-Variation-Diminishing (TVD) schemes are the best ones to avoid
non-physical oscillations into the solutions, especially near high gradient regions. Gorski et
al.'*~'5 applied the TVD schemes to solve Navier-Stokes equations with the k& equations of
turbulence and performed the computations for the transonic flowfields over nozzle/afterbody,
axisymmetric afterbodies, and six-degree compression corner. In their work, near-wall techniques
were employed in the near-wall region to allow high CFL numbers and stabler convergence. In
1989, Takakura® solved the flowfield over the ONERA-M6 wing by Harten—Yee!” TVD scheme
with Jones—Launder k¢ turbulence model,*® i.e. wali functions were abandoned and the flowfield
near the wall were also obtained.

Present study uses TVD schemes of various forms to solve Navier-Stokes equations with
Chien’s k~¢ turbulence modecl'® and compares the effectiveness and accuracy of various TVD
schemes for the transonic turbulent flow past projectiles at zero angle of attack. The computation
is performed on the grid systems of a real projectile with a supporting sting or with flat base. The
solution with these grid system are much more difficult to achieve convergence than that with the
grid system of extended boattail of Sahu.!°

GOVERNING EQUATIONS

The differential equations used to describe the mean flow for this study are the time-dependent,
mass-averaged Navier—Stokes equations for axisymmetric flow of a compressible fluid. Depend-
ing on the turbulence model used, two additional equations of turbulent kinetic energy (k) and
turbulent energy dissipation rate (¢) are implemented. The two-equation model used here is the
Chien’s k-¢ model,’® which is similar to that of Jones and Launder.® The resulting equations, in
divergence or conservation law form, can be written as follows:

0(0) 4+ 0E)+2,(F)=0:(M)+3,(N)+H, (1)

where ¢,  are co-ordinates in the longitudinal and circumferential directions, and ¢ is the time.
0, E, F,H, M, N are 6 x 1 column matrix and their elements are
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where

U=¢u+é,, V=n.u+n,v (contravariant velocities),
div {/=ux+vy+v/y,
Hege = 4 (molecular part)+ u, (turbulent part)
m=m+wu/oy, p=pm+m/o, =10, 6,=13
Tox =5 Here (20, — vy, —0/y),
Tyy = ey (2vy —u,—v/y),
Tay = Herr(ity +05),
Up =t Ex Uy, Uy=u:l, +u,n,,
V=0 &+ 0y, by =0:C, + U1,
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where P is the production of turbulent kinetic energy and is expressed as

P=(M ,/Re)u[2(u2+02)+2(v/y) + (u, + v,)* —(div V)*]—3 pk(div V).

367

This constitutes a low Reynolds number formulation of the k-¢ model. Calculations are
extended up to the wall itself, and exact value of the dependent variables at the wall are used as

boundary conditions.

The k—& model employs the eddy viscosity concept and relates eddy viscosity to the turbulent

kinetic energy and dissipation rate as

.utzcup(kz/g)(Rem/Moo)'
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The empirical coefficients in the turbulence model are:'®
¢, =1-35,
¢y =1-80[1-0-22 exp(— R2/36)],
¢, =009 [1 —exp(—00115 y7)],
R =(Re /M ,)pk*/(uc).

Numerical algorithm

The finite volume approach is used for the formulations of difference equations, i.e. the
numerical fluxes are defined at cell interfaces and dependent variables are defined at the centroids.
The discrete form of equation (1) can be approximated as

R - At~ -~ Y~ .
Q?;l‘ :'1,j=_A_é[(E_M)i+1/2,j—(E’M)i—1/z,j] 1

Al o )
_E[(F"N)i,jﬂ/z_(F—N)i,j—l/z]"ﬂ+H?j1. (2)

When evaluating the numerical flux functions E,H s2,j» the metrics are evaluated at i+1/2,j.
Likewise, the metrics are evaluated at i, i, j £ 1/2 for F, i,j+ 12 In this study, the TVD numerical flux
is applied for the convective term (E, F) and the central difference approximation is used for the
viscous term (M, N). Four TVD schemes are formulated using finite yolume approach. The
expressions of the numerical fluxes for these schemes employed in this study are described briefly
and the details can be found in the cited references.

van Leer’s third-order MUSCL type TVD scheme®® 2!

This schieme extends the original Roe’s scheme?® to third order with MUSCL interpolation by
van Leer.2! The numerical flux can be in terms of

Ei+ 1/2,j=%[E(th+ 1/2.j)+EA(Q%+ 1/2,j)_R\i+ 1/2.j|/ﬂi+l/Z,j&i+lf2,j]1 (3)

where

Qfi1y2,;=0i;+ [(I—KS)(AQ) +(1+x)(AQ) 1,

0 112.5=0i;— [(1_KS)(AQ)++(1+KS)(AQ)_]:',J':

(AQ)l i Ql j Qi—l.j’
(AQ)i,rjz 0+ 1,i Qi,j’
s=[2(AQ); (AQ)' 1 j+ 0 J/[(AQ) 7 +(AQ)' A i+ 80,
=14 for third-order scheme and £,=1-0x107° to avoid dividing by zero.

The Roe’s average?® is used to calculate the rlght elgenvector matrix R,+1 12,5, 18 1nverse
RL+ 1,2, j and the eigenvalue matrix [Alis1 12, j» where R, R~1 are 6 x 6 matrices having the forms as
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where [r;], [I;] (i=1, 4, j=1, 4) are 4 x 4 model matrices and the inverse matrix R~' for the
inviscid mean flow equations has a standard form suggested by Pulliam.?? rss, re¢, [ss and lge are
the elements of model matrix R and inverse medel matrix R™! for k and ¢ equations and their
values can be given as follows:'*

1

I'ss=Fes =/ lss=loo=—.
P
The eigenvalue matrix [A];, (/; ; in &-direction can be expressed as
[1=diag[U, U, U+c(E3+&5)°, U—c(E2+ED°5, U, U]

and | /| represents the diagonal matrix of which elements are all positive.

& 1s the differential characteristic (Riemann) variable matrix, which is defined as
Biv1j2. ;= Riih 2, QR 1)2.;—QFs1)2.,)- This scheme will display third-order accuracy in the
smooth region but it is reduced to first-order accuracy near shock or other extreme value region.

Harten’s second-order upwind TVD Scheme'”

For this scheme, the numerical flux can be given as

—~

(E)iv1p2,j=3Ei j+Eiv1 j+Rivi2, jPiv12,)), (%)
where
¢i+1/2,,':%‘P(M+1,/2,,')(@:',j+.‘j:+1,j)—‘P()v£+1/2,j+f§+1/2,j)&5+1/2,j
1 . R
gi,; =minmod (“;H/z,j, 04— 1/2,j),
! Girg=dhy
E\P(ﬂﬂ/z._i)% if Odn/z,ﬁéo,

41 _
Viv12,i=

i+1/2, j
0 if 8l 10,5=0,
|z] |z[ =04,

Y(z)=

(z) |:(22+5f)/25, |z{<d;.

This scheme is non-MUSCL type second-order upwind TVD scheme and also called ‘modified

flux scheme’. §; is set as 0-05 in the present computation, The ‘minmod’ function of a list of
arguments is equal to the smallest absolute value of these arguments if the arguments are of the
same sign, or is equal to zero if any arguments are of opposite sign.
_ The function W(z) is an entropy correction to z and g; ; is the ‘limiter’ function. E;; and
E,,  ;are evaluated with matrices computed at i+1/2, . Riiy 12.; 15 the matrix of right eigenvec-
tors of the Jacobian matrix ¢E/3Q evaluated using Roe’s averaged variables, and ¢ 1s a vector that
contains the first-order diffusion and second-order correction terms.



370 H. LIN AND C.-C. CHIENG

Yee'’s second-order symmetric TVD scheme®®
The numerical flux function, £, 12.j» 16 defined as
E;, 1/2,j:%[Ei,j+Ei+ it Riv1yz i Piv125] (6)

The above terms have the same definitions as those in the Harten’s scheme except ¢;.15,; is
expressed as

Giv1y2,j=~VY(hiv1/2,7)Giv12,;— Wit 12,5)
Wiy, j=minmod (12, %it1/2, j> %it3/2, 0
Roe’s first-order scheme®®

The numerical flux can be in terms of
Ei+ 1/2,j=%[E(Qi,j)+ E(Qi+ 1/2,j)_ §i+ 1/2,f |I\i+ 12, 8y 1/2,1':'- (M

Time differencing

The implicit approximately factored backward-Euler scheme for the full Navier-Stokes equa-
tions and k—¢ equations that use upwind differencing in the &- and g-direction can be written in
the following form?!: 24

[I+At(@0; AT +8F A7) [I+Au@d, B* +6,; B™)—AtD]"(AQ): ;=RHS of equation (2) at time¢,
©)

where the splitting Jacobian matrix A*, A-, B*, B~ are evaluated by model matrices R,R~'and
diagonal matrices [A*],[A™ ], ie.

A*=R[AT]R™Y, A =R[L]R! (10)

and the similar form for B*, B~.[A* ], [A~] are diagonal matrices whose elements are all-positive
and all-negative eigenvalues. First-order upwind differencing?* is employed for evaluating the
splitting matrix A*, A=, B* and B™.

Generally, in order to maintain the stability of the viscous term, the modified split Jacobian
matrices AX (or BF) are?

Af=R*([A*1+vHR*

29 M (e Ve
y o 2 Mo (Heir/ )| < (1)
(Re Pr)

All these Jacobian matrices A}, ﬁf are evaluated at cell interfaces and replace the A* and B*
in equation (9).

The source term H associated with the turbulence field variables is composed of production,
dissipation and decay terms and the values can be very large. It can become dominant over the
convection and diffusion terms near the wall. This is the result in a very stiff algorithm if all source
terms are treated in an explicit manner. Therefore, an additional 6 x 6 Jacobian matrix D is
incorporated on the LHS which is formed by taking partial derivatives of k—¢ source terms
Hs, Hg with respect to conservative variables pk, pe. All the values of clements of D except
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dss, dse, des, dee are equal to zero and the values of the non-zero elements are given below
dss=2¢,(k/e}P'—2(M ,/Re) f(py 7).
dse=—c,(k*/e?)P'—1,
des=cyc, P +c 82 /k?,
dee= —2c28/k—(M ,/Re) [ exp(=05y™)/(pyi)], (12)
where
P =2(u2+12) + 2(u/yP +(u, + v, —3div V)3,

and ¢;, ¢; and ¢, are empirical constants listed in the previous section.
The matrix D is replaced by D’ to ensure the diagonal dominance in the present work and the
values of the elements in D’ are

55 =dgs=—max(|dss|, |desl), (13)
dss =ds6=0.

After the above manipulations, the k and ¢ equations can be decoupled from other equations.
Only two scalar tridiagonal matrix equations along with a 4 x4 block-tridiagonal matrix are
solved in the present work. Although this uncoupled approach is not as exact as the 2 x 2 block
tridiagonal system by Nichols® and Sahu.'® The stability of the solution is greatly improved.

There are several approaches to improve the stability and convergence rate for the system of
equations. For example, Takakura'® changed the values of the elements of model matrices R and
R™! by adding non-zero coupled terms to 75y _4, 761 4, l5; and lg;. Thus, the k and ¢ equations
and the system equations of mean flow are coupled completely and 6 x 6 block tridiagonal matrix
equations must be solved simultaneously. Shih and Chyu?® proposed an alternative method to
treat the stiff source term when approximate factorization algorithm is employed, i.e. the implicit
operator on LHS of equation (2) can be written as

[I+AL@; A* 407 BY) = ADYI—AtD]™ V' [T+ A8 A~ +8, B")—AtDI(AQY,
=RHS of equation (2} at time ¢. (14)

If only a steady-state solution is required, one can let At change in space.?® Use of space varying
At can be interpreted as an attempt to use a more uniform Courant number throughout the flow
field. Changing At can be effective for grid spacings varied from very fine to very coarse. The
formula of space varying time step of finite volume discretization and axisymmetric flow can be
given as

_‘1+\/J' (15)

Generation of computational grid

The test problem is chosen as transonic turbulent flows past a secant-ogive-cylinder-boattail
projectile (SOCBT) at zero angle of attack. The calculated results are compared with experi-
mental data.' ' '? The projectile model as shown in Figure 1 has a 3-caliber secant-ogive-part (or
nose part} followed by a 2-3 caliber cylinder and 0-5-catiber 7-degree boattail. In this study, two
types of computational grid are established by using the hyperbolic solver.2® For both grids, the
outer boundary of the flow domain is about 18 calibers from the projectile and an exponential
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Figure 1. Geometry of secant-ogive-cylinder boattail projectile

stretching function with minimum spacing of 0-00002 caliber from the solid boundary in the
hyperbolic grid generations, which provides 2 3-grid point in the viscous sublayer. The first grid
shown in Figure 2(a) is 106 x 60 O-type grid around the real projectile (i.e. without sting). The
boundary for grid points of 1-26-42-76-106 are the point of nose, and connection points for
cylinder, boattail and base region. The second grid shown in Figure 2(b} is incorporated with
a sting of (-2 base diameter to support the projectile model in the experiment. The grid in the
longitudinal direction is wrapped around the projectile base and sting. There are 30 points
between the base corner (5-801 calibers) and the sting corner (5-807 calibers) in the longitudinal
direction to approximate the sharp corner of the base. The size of this numerical grid is 142 x 60.
Similarly, the boundary grid points are distributed as 1-26—42-76-106 142 for secant-ogive,
cylinder, boattail and base-sting corner.

Initial and boundary conditions

Initial conditions are chosen to be a uniform flow field of free-stream conditions for mean flow
equations. The initial conditions to start the k—¢ calculations are a uniform field of 2 per cent
turbulence intensity:

ko=1-5(0020,)%,  £o=k'5/001,

where v, is free-stream speed.

The characteristic extrapolating technique is applied at the far field (§=#m.,) and outflow
positions (i.e. £ =¢,,,,). The convergence of the present Navier-Stokes solver is reached faster by
this method than setting a constant of free-stream value at the far-field boundary. No slip
boundary condition is adopted on the solid surface of projectile and sting for velocities u and v.
The density and pressure on the wall are set to be equal to the values of node points next to the
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Figure 2(b). A 142 x 60 hyperbolic wrapped around grid

wall. It is assumed that the normal momentum equation suggested by Steger?” need not be solved
because the point of J=2 is very close to the wall compared to the grid space in longitudinal
direction. Axisymmetrical condition at £=1 is applied.

For the k-e calculation, a zeroth-order extrapolation of the k—e values is used to specify
conditions at the outflow and symmetric boundary. The turbulent viscosity g, and values of k and
¢ are zero or a small value of 1076 along solid walls.
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RESULTS AND DISCUSSIONS

Numerical computations have been made for turbulent flow past a secant-ogive-cylinder-boattail
projectile at zero angle of attack and for free-streams Mach number of 0-94. The free-stream
Reynolds number (defined as g, V. D/u.) is 2,620,000 and is in agreement with the experimental
condition. In addition to the mean flow results (such as surface pressure coeflicients, velocity
profiles on the boattail, the flow patterns surrounding the projectile and behind the base, Mach
number contours), the turbulent properties including eddy viscosity g, turbulent kinetic energy
k and dissipation rate & are obtained by four TVD schemes with two-grid systems. The
convergence characteristic of the predictive schemes are also included and compared.

Comparisons between different TVD schemes

Surface pressure coefficient.” The computed surface pressure coefficients along the projectile for
Mach numbers of 0-94 for two-grid systems (i.e. with and without supported sting) are compared
with the experimental data.'™*? Figure 3 shows the computed pressurc coefficient by different
TVD schemes of different order of accuracy for the case of real projectile of flat base and Mach
number 0-94. The schemes are van Leer’s third-order MUSCL-type scheme, Yee’s second-order
symmetric scheme, Harten’s second-order scheme and Roe’s first-order scheme. The computed
values agree with experimental data except X/L =06, but the results by Roe¢’s first-order scheme
exhibit the largest difference at all locations. All TVD schemes underpredict pressure values near
X/L=0-63. This defect is caused by the coarse grids distributed in this region. The results by two
second-order TVD schemes and one third-order scheme are of very slight difference along the
projectile surface. However, apparent difference for different schemes of different order of
accuracy are observed for the surface pressure prediction on the base. This figure also illustrates
that the predicted values of surface pressure on the base are converged to the value by higher-

0.2 1 ; | T T SR BT B O 5
M=0.94, Alpha=0 deg
106x60 O--type grid (flat base)
Different schemes
0.0
g --0.2 O
g .
~ jus]
2—-0.4 Z
5
bxp [Miller] ’
Exp.[ Danberg]
- Harten(2nd order)
-0.6 - Van Leer(3rd order) C T
--------- Yee's syminetric(2nd{ order) !
-— Roe(lst order) N
~0.8 - : ! - S bl 05
0.5 0.6 0.7 0.8 0.9 1.0 L 5 0
X/ R/Rb

Figure 3. Surface pressure coefficient distributions by different schemes, M., —0-94 (base)
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Figure 4. Surface pressure coefficient distributions by different schemes, M, =094 (sting)

order schemes. Figure 4 shows the comparisons of the measured and predicted surface pressure
coefficients by different schemes for the projectile with supporting sting. The computed results for
the projectile with supporting sting indicate the same phenomena as that for the projectile with
flat base. The pressure coefficients along the projectile surface are very close to the measured
values for both the projectiles with and without supporting sting. However, it is also noted that
the surface pressure coefficient for the projectile with supporting sting is slightly lower than that
for the projectile with flat base near and after the shock on the boattail, which is favourable to the
desired results. The small difference is due to the prediction of shock position which is slightly
influenced by the flow patterns after the base. The flow field in the base region is complex, existing
strong viscous/inviscid interaction, viscous/viscous interaction and regions of large recirculation.
Accurate prediction of the flow field in the wake region is very difficult. Higher-order schemes
should yield results of better accuracy. It shows that smaller variations of the pressure on the base
if higher-order scheme is applied.

Velocity profile. The velocity profiles at various axial positions for Mach number 0-94 and the
projectile with fiat base are shown in Figure 5. The schemes of second and third orders exhibit
good agreement with cach other at stations X/L =0-902, 0924, 0-946 and 0-967, but give different
profiles of the velocity at X/L =0-989. Roe’s first-order scheme always yield different profiles from
others. Figure 6 plots the velocity profiles of the projectile with supporting sting for the same
Mach number. It indicates thatsecond or higher-order schemes give the almost same profiles at
stations X/L=0-902,0-924, 0-946 and 0-967 and some different profiles at station X/L=0-989.
The station X/L=0-967 is located near the shock for the projectile. The different velocity profiles
at X/L=0967 for different base configuration implies that the predicted shock locations for
projectiles with and without sting are slightly ahead of X/L=0967 and slightly behind
X/L=0967. It can be resulted from the different order of accuracy schemes and different
geometries of base yield different flow fields near shocks or rapidly changing region. The
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Figure 5. Velocity profiles at various axial station M, =094 (base)
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disagreement with measurement at X /L =0-924, which is located near the expansion fan, may be
related to errors in the reduced measurement data.

Turbulent quantities. The turbulent kinetic energy k, the rate of turbulent dissipation ¢ and
eddy viscosity y, profiles along the projectile are of interest. Figures 7 and 8 plot the profiles of
turbulent kinetic cnergy for projectiles with flat base and with supporting sting, respectively.
These two figures indicate that results can be categorized in two groups: results by first-order
scheme and by higher-order schemes. The profiles generally have peak values near y© =40 and
decay rapidly after y* > 5000. The magnitude of turbulent kinetic energy is increased due to the
expansion fan (comparing profiles at X/L =0-870 and 0-924) and slightly decreased due to shock
(comparing profiles at X/L=0-967 and 0-989 in Figures 7 and 8). Figures 9 and 10 show the
profiles of turbulent energy dissipation rate ¢ at various stations for different base configurations.
They indicate that the peak value by Roe’s scheme is apparently smaller than those by another
schemes at five stations. Comparing the profiles of turbulent kinetic energy, the computed profiles
of turbulent dissipation rate is more dependent on the selection of numerical schemes. Figures 11
and 12 plot the profiles of turbulent viscosity g, which are important to the computation of mean
flow field directly. The results can be divided into two groups also: by first-order scheme and by
higher-order schemes. Discrepancies are clearly shown at stations near larger gradients such as
near-expansion fan, shock and base corner for higher-order schemes.

Mach number contour. The Mach number contours before the base are very similar for two
different grid systems and four different TVD schemes. Two represented Mach number contours
are shown only in the paper. Figures 13 and 14 show the Mach number contours by third-order

Mach numbqr cgntour L

M=0-94, Alpﬂl&lflq deg . \ )

HO6x60N0 -Lype grigd-~, '

S K-k equation ) \

Van lLeer ( Bqu %ﬁr/de;_rg‘ \
\ i F kY

i -
[ AN

[ S B A
N Vol [ / ",//\\\'v |

5 [ |
Y FE

Figure 13. Mach number contour for M, =0-94 (van Leer’s MUSCL, base)
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Mach number cdnlour
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Figure 14. Mach number contour for M, =094 (van Leer’s MUSCL, sting)

Figure 15(b). Particle tracing plot for M, =0-94 (Yee’s symmetric, base)
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Figure 16(a). Particle tracing plot for M =094 (Roe, sting)

Figure 16(b). Particle tracing plot for M, =094 (Yee’s symmetric, sting)

MUSCL type TVD scheme for the projectile with flat base and with suppporting sting. Very
minor difference is observed before the base, but the patterns after the base is completely changed
to a much more complicated configuration if the extra supporting sting exists. The contour
configurations starting from the shock on the boattail is also influenced and it gives slightly
different values of pressure as discussed in the previous section.
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Figure 16(d). Particle tracing plot for M =0-94 (van Leer’s MUSCL, sting)

Recirculation zone. Figures 15(a) - 15(d) show the particle tracing plots in the base region for
the projectile with flat base for Mach number 0-94. It is seen that the sizes of recirculation zone are
apparently different by the four TVD schemes of different order of accuracy but the centres of the
recirculation zones are located nearly the same position for higher-order schemes. If the extra
supporting sting is attached to the projectile, the size of the recirculation zones are largely reduced
(Figures 16(a)-16(d)). It is observed that the predicted size by Roe’s first-order scheme is much
smaller than those by higher-order schemes. The secondary vortex regions for the grid system
with supported sting are concerned. Figures 16(a)-16(d) indicate that the secondary vortex
region by Roe’s scheme is smaller than those by another schemes. It can be resulted from the
larger numerical diffusions and the smaller vortex in the recirculation zone by the lower-order
scheme.

Iteration history. The iteration histories with two-grid systems are plotted in Figures 17 and
18. The L, residual is calculated at each iteration step by the following formulas:

Residual= 3 [(AQP/V)?+(AQY/J)* +(AQE/T) +(AQL/T) 1/ Npoine

=1, Npoint

L, residual=log; o [SQRT(residual)].

It is found that the convergent rate of Roe’s first-order scheme is the fastest among the four TVD
schemes and that of the third-order scheme is the slowest. All curves exhibit some degree of
oscillations within 12000 iteration steps. The oscillations may be amplified by the strong
non-linear property of the two-equation model of turbulence. The L, residual for all TVD
schemes can be reduced over four orders after 7000 iterations and the convergence is actually
achieved when five orders are reduced. It means that the convergent rate is very slow if the two
equation model of turbulence is implemented. Figure 18 plots the iteration histories for the
projectile with supporting sting. Comparing Figures 17 and 18 shows that larger oscillations and
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M::O.QZL, alpha:OY deg; | K -AE' equation
106x60 O--type grid (flat base)
-— Harten(2nd order) 1
a\ ----- Van Leer(3rd order)
ik - Yee's symmetric(2nd order) ]
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Figure 17. Rate of mean flow residual convergence for M, =0-94 (base)

M=0.94, alpha=0 deg, K- E equation
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Figure 18. Rate of mean flow residual convergence for M. =094 (sting)
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N][:O.QZL, alplha:O‘ deg;y K*E’ equa'tion
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Harten's 2nd order TVD scheme
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Figure 19. Rate of mean flow residual convergence for M, =094 (base)

slightly slower converging rate are observed if the supporting sting is adopted to the projectile
base.

Figure 19 compares the iteration histories if the present ADI method or the LU method
proposed by Shih and Chyu?® is applied. It shows that the present ADI method has the faster
convergent rate than their method has if the same time step is given.

CONCLUSIONS

Reynolds averaged Navier-Stokes equations with k~& two-equation model of turbulence are
successfully solved by various TVD schemes for transonic turbulent flow over projectiles with
and without supporting sting. There are several conclusions which can be made: (1) Very slight
differences of the surface pressure coeflicients and the profiles of velocity and turbulent quantities
on the boattail are observed for the projectile with and without the supporting sting. (2) Most of
the computed results can be categorized into two groups: second- and third-order schemes and
first-order scheme. Apparent difference is displayed for these two groups. Small discrepancies are
obtained for the schemes of second- or higher-order and the discrepancies are found at the
locations of high gradients such as shock or base corner. It implies that TVD schemes of
second-order accurate is adequate to obtain reasonable flow fields around the projectile (but not
the base region). (3) Flow patterns are changed significantly for the base flow computations when
TVD schemes of different orders are employed. Different-order schemes will give different sizes of
the recirculation zone, the pressure coefficients on the base and, thus, the drag calculation. (4) The
pressure coefficients on the base are varied if different TVD schemes are applied. It is found that
the computed results of flow patterns and base pressure coefficients are converged from that by
first-order scheme to higher-order schemes. It indicates that third- or higher-order scheme is
needed for the computation of accurate base flow. (5) The convergence rate for the projectile with
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flat base is faster than that for the projectile with supporting sting. The higher-order schemes need
more iteration steps to reach convergence.
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APPENDIX: NOMENCLATURE

flux vectors in transformed co-ordinates

Jacobian

turbulent kinetic energy

length of the body

Mach number

viscous flux vector in transformed co-ordinates
production rate of turbulent kinetic cnergy

Prandtl number

vector of dependent variables

right cigenvector matrix

Reynolds number

turbulent Reynolds number

viscous flux vector in transformed co-ordinates
time

axial and normal velocity components
contravariant velocities in transformed co-ordinates
distance from projectile nose along the axis of symmetry
axial and radial co-ordinate

normal distance from the solid wall

dimensionless normal distance from the solid wall

differential characteristic variable vector

turbulent dissipation rate

ratio of specific heats

modified eigenvalues for upwind TVD scheme

small value for entropy correction function ¥(z)

parameter for MUSCL type TVD scheme

effective, molecular and turbulent viscosity, u= g+ f
transformed co-ordinates

density

modified flux function for upwind and symmetric TVD scheme

located at the interface of cell
located on centroid of cell
free-stream value

laminar

turbulent

time-step level
approximated numerical flux
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any variable including metric terms
transpose
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