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COMPARISONS OF TVD SCHEMES FOR TURBULENT 
TRANSONIC PROJECTILE AERODYNAMICS 

OF TURBULENCE 
COMPUTATIONS WITH A TWO-EQUATION MODEL 

HERNG LlNf  AND CHING-CHANG CHIENG* 
National T m x  Hua Cninlterntj, Hnnchu, Taiuan, Republic of China 

SUMMARY 

The development of a computer program to solve the axisymmetric full Navier-Stokes equations with k-c: 
two-equation model of turbulence using various total variation diminishing (TVD) schemes is the primary 
interest of this study. The computations are performed for the turbulent, transonic, viscous flow over 
a projectile with/without supporting sting at zero angle of attack. The predicted results, as well as the 
convergence characteristics, by various TVD schemes are compared with each other. The results show that 
the TVD schemes of higher-order accuracy do have influence on the regions of high gradients such as shock, 
base corner and base flow. However, the schemes of third-order accuracy d o  not necessarily improve the 
agreement with measured data (which is not available on the base) than that of second-order accuracy, but 
surely generate apparent different result of base flow. The supporting sting on the projectile base will 
complicate the base flow and the existence of the sting will slightly shift the shock location and slightly 
change the flow field after the shock. More iteration steps are needed to get the converged results in the 
computation for the projectile with sting. 

KEY WOKIIS TVD schemes Full Navicr-Stokes equation Two-equation model Transonic turbulent flow 
Projectile aerodynamics Recirculation flow 

INTRODUCTION 

Turbulence modelling in the calculation of aerodynamic behaviour of projectiles is an important 
issue. The conventional Navier-Stokes solvers employ the algebraic eddy viscosity model such as 
Baldwin -Lomax model,' which limits the applicability of Navier Stokes solver, especially for 
complex flows. Two equation models of turbulence are very popular in solving complex, 
incompressible, turbulent flows in various engineering applications. In 1983, Coakley' extended 
these models for flows past aerofoil at angle of attack, later on, numerous investigations3 -9 
applied the k--E turbulence model of similar forms to flows past axisymmetric bump, axisymmetric 
ramp, aerofoiljwing, cascade, flat plate, compressible corner and backward facing step. The 
predictions were in good agreement with experiments. In 1985, Sahu and Danberg" employed 
the k- E two-equation model of turbulence to compute the turbulent flow over projectiles. The 
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flowfield over projectiles is a combination of turbulent boundary layer and base flow and the 
governing equation set is stiff and is difficult to achieve convergence. Therefore, they used a grid 
system of extended boattail to skip the base flow computation in their work. 

In recent years, several computational schemes have been developed to solve the 
Navier-Stokes equations. Total-Variation-Diminishing (TVD) schemes are the best ones to avoid 
non-physical oscillations into the solutions, especially near high gradient regions. Gorski et 

applied the TVD schemes to solve Navier-Stokes equations with the k-r equations of 
turbulence and performed the computations for the transonic flowfields over nozzle/afterbody, 
axisymmetric afterbodies, and six-degree compression corner. In  their work, near-wall techniques 
were employed in the near-wall region to allow high CFL numbers and stabler convergence. In 
1989, TakakuraI6 solved the flowfield over the ONERA-M6 wing by Harten-Yeei7 TVD scheme 
with Jones-Launder k--r turbulence model,” i.e. wall functions were abandoned and the flowfield 
near the wall were also obtained. 

Present study uses TVD schemes of various forms to solve Navier-Stokes equations with 
Chien’s k--E turbulence modcl’ ’ and compares the effectiveness and accuracy of various TVD 
schemes for the transonic turbulent flow past projectiles at zero angle of attack. The computation 
is performed on the grid systems of a real projectile with a supporting sting or with flat base. The 
solution with these grid system are much more difficult to achieve convergence than that with the 
grid system of extended boattail of Sahu.” 

GOVERNING EQUATIONS 

The differential equations used to describe the mean flow for this study are the time-dependent, 
mass-averaged Navier-Stokes equations for axisymmetric flow of a compressible fluid. Depend- 
ing on the turbulence model used, two additional equations of turbulent kinetic energy ( k )  and 
turbulent energy dissipation rate (8) are implemented. The two-equation model used here is the 
Chien’s k-r model,’ * which is similar to that of Jones and Launder.’ The resulting equations, in 
divergence or conservation law form, can be written as follows: 

&(Q) + a@) + q E 2 )  = d,(A) + a,(@) + E?, (1) 

where 5, 17 are co-ordinates in the longitudinal and circumferential directions, and t is the time. 
Q, i, F ,̂ Z?, M, ~ are 6 x 1 column matrix and their elements are 

- 1  
J 

Q = -  

$j-  
Re,J 

- 1  E = -  
J 

- 1  F = -  
J 
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* 1  H = -  
J 

where 

U = L u  + kyu ,  
div V = u, + u, + v/y,  

V= yxu + q,u (contravariant velocities), - 
perf =PI (molecular part) + fit (turbulent part) 

where P is the production of turbulent kinetic energy and is expressed as 

P = (hi,,/ Re,)pt [2(uz + 0:) + 2 ( ~ / y ) ~  + (u, + 0,)' - (div f92] - 5 pk(div q). 

This constitutes a low Reynolds number formulation of the k --E model. Calculations are 
extended up to the wall itself, and exact value of the dependent variables at the wall are used as 
boundary conditions. 

The k--E model employs the eddy viscosity concept and relates eddy viscosity to the turbulent 
kinetic energy and dissipation rate as 
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The empirical coefficients in the turbulence model are: 

c1 = 1.35, 

c 2 =  1.80[1-0.22 exp(-R,2/36)], 

c,=0-09[1 -exp(-0.0115 y + ) ] ,  

Rt=(Rem/M,)Pk2/(FLC).  

Numerical algor ithm 

The finite volume approach is used for the formulations of difference equations, i.e. the 
numerical fluxes are defined at cell interfaces and dependent variables are defined at the centroids. 
The discrete form of equation (1) can be approximated as 

When evaluating the numerical flux functions Ei2 1,2,Jr the metrics are evaluated at i +  1/2,j. 
Likewise, the metrics are evaluated at i , j k  1/2 for F,,,+ 1 , 2 .  In this study, the TVD numerical flux 
is applied for the convective term (E, F) and the central difference approximation is used for the 
viscous term (n?, I?). Four TVD schemes are formulated using finite volume approach. The 
expressions of the numerical fluxes for these schemes employed in this study are described briefly 
and the details can be found in the cited references. 

van Leer's third-order MUSCL type TVD scheme2', 21 

This scheme extends the original Roe's scheme'' to third order with MUSCL interpolation by 
van Leer.21 The numerical flux can be in terms of 

where 

I C = ~  for third-order scheme and E,, = 1.0 x 
The Roe's average2' is used to calculate the right-eigenvector matrix I&+ l , 2 , i ,  its inverse 

k;>l/z, and the eigenvalue matrix [ ; I i +  1,2, j ,  where R, R-'  are 6 x 6 matrices having the forms as 

to avoid dividing by zero. 
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R =  

- 
r l l  r12 r13 r14 

r21 r22  r 2 3  r24 

r31  r32 r 3 3  r34 

r41 r42 r43 r44 0 0 
0 0 0 0 ~ ~ ~ 0  
0 0 0 0 o r 6 6  - 

where [rij], [lij] (i = 1, 4, j =  1, 4) are 4 x 4 model matrices and the inverse matrix R -  ’ for the 
inviscid mean flow equations has a standard form suggested by Pulliam.” r 5 5 ,  r66p l S 5  and 166 are 
the elements of model matrix R and inverse model matrix R - l  for k and E equations and their 
values can be given as  follow^:'^ 

1 

P 
r55=r66= f ,  1 5 5  =/66=-. 

The eigenvalue matrix in t-direction can be expressed as 

and l i l l  represents the diagonal matrix of which elements are all positive. 
2 is the differential characteristic (Riemann) variable matrix, which is defined as 

B,+ 112, = k+’~p,,(Q?+ i j Z ,  - Qf; 1,2,,). This scheme will display third-order accuracy in the 
smooth region but it is reduced to first-order accuracy near shock or other extreme value region. 

Harten’s second-order upwind TVD Scheme’ 

For this scheme, the numerical flux can be given as 

where 

This scheme is non-MUSCL type second-order upwind TVD scheme and also called ‘modified 
flux scheme’. 6, is set as 005 in the present computation. The ‘minmod’ function of a list of 
arguments is equal to the smallest absolute value of these arguments if the arguments are of the 
same sign, or is equal to zero if any arguments are of opposite sign. 

and 
it+ 1 , ,  are evaluated with matrices computed at i+ 112, j .  R,+ 1,2,  is the matrix of right eigenvec- 
tors of the Jacobian matrix al?/;IQ evaluated using Roe’s averaged variables, and 4 is a vector that 
contains the first-order diffusion and second-order correction terms. 

The function Y(z) is an entropy correction to z and 8!,J is the ‘limiter’ function. 
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Yee's second-order symmetric TVD scheme23 

The numerical flux function, Ei+ j ,  is defined as 
- * 

(6) i -  Ei+ 112, j = T  CEi, j + Ei+ i ,  j + &+ 1/2,  j 4i+ I / Z ,  jl . 
The above terms have the same definitions as those in the Harten's scheme except & + 1 , 2 , j  is 
expressed as 

4i+ ~ / ~ , j = - ~ ( ~ i +  112, j ) ( a i +  112, j- wi+ 1/2,j)9 
A wi+ 112, j=minmod (ai- 1 j 2 ,  j r  ai+ 1/2 ,  j, a i + 3 / 2 ,  j ) .  

Roe's ,first-order scheme2' 

The numerical flux can be in terms of 

Time diferencing 

The implicil approximately factored backward-Euler scheme for the full Navier-Stokes equa- 
tions and k-c equations that use upwind differencing in the 5- and ?-direction can be written in 
the following 

[ I  + At(d, 2' + d l  a-)]" [ I  + At(d, B+ + d l  B - ) -  Ato^]"(AQ)y, j =  RHS of equation (2) at time t ,  

(9) 

where the splitting Jacobian matrix A^+, A-, B + ,  B -  are evaluated by model matrices R^, k1 and 
diagonal matrices [A+], [? 1, i.e. 

A^+ =R^[I+]R^-l, A^- = R ^ [ X - ] R ^ - '  (10) 

and the similar form for B^+, k. [I+], [I-] are diagonal matrices whose elements are all-positive 
and all-negative eigenvalues. First-order upwind d i f f e ren~ ing~~  is employed for evaluating the 
splitting matrix A^+, A^-, B+ and B - .  

Generally, in order to maintain the stability of the viscous term, the modified split Jacobian 
matrices AI,!(or $1 are2 

Â' = R  ̂* ( [j" * ] & vl^)R^ - 1 * 

All these Jacobian matrices J:, 6: are evaluated at cell interfaces and replace the Â' and ŝ ' 
in equation (9). 

The source term H associated with the turbulence field variables is composed of production, 
dissipation and decay terms and the values can be very large. It can become dominant over the 
convection and diffusion terms near the wall. This is the result in a very stiff algorithm if all source 
terms are treated in an explicit manner. Therefore, an additional 6 x 6  Jacobian matrix 6 is 
incorporated on the LHS which is formed by taking partial derivatives of k--E source terms 
H , ,  H ,  with respect to conservative variables p k ,  p ~ .  All the values of elements of 6 except 
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d55 ,  d 5 6 ,  d 6 5 ,  d66 are equal to zero and the values of the non-zero elements are given below 

d 5  = 2 c , ( k / ~ ) P '  - 2(  M , /Re)p, / (py :)? 

d56 = - c , ( k ' / ~ ~ ) P  - 1, 

and cl, c2 and c, are empirical constants listed in the previous section. 

values of the elements in 
The matrix 6 is replaced by ô , to ensure the diagonal dominance in the present work and the 

are 

After the above manipulations, the k and E equations can be decoupled from other equations. 
Only two scalar tridiagonal matrix equations along with a 4 x 4 block-tridiagonal matrix are 
solved in the present work. Although this uncoupled approach is not as exact as the 2 x 2 block 
tridiagonal system by Nichols6 and Sahu." The stability of the solution is greatly improved. 

There are several approaches to improve the stability and convergence rate for the system of 
equations. For example, Takakura16 changed the values of the elements of model matrices R and 
R- '  by adding non-zero coupled terms to r 5 1  - 4 ,  r6< -4 ,  1 5 ,  and 1 6 , .  Thus. the k and E equations 
and the systcm equations of mean flow are coupled completely and 6 x 6 block tridiagonal matrix 
equations must be solved simultaneously. Shih and ChyuZ* proposed an alternative method to 
treat the stiff source term when approximate factorization algorithm is employed, i.e. the implicit 
operator on LHS of equation (2) can be written as 

[I+At(i";A^+ +a; B+)-A161"[1-AtD^]-~"[Z+At(ir: A^- +d,'B-)-AtD^]"(AQ);.j 

=RHS of equation (2) at time t. (14) 
If only a steady-state solution is required, one can let At change in space.25 Use of space varying 

At can be interpreted as an attempt to use a more uniform Courant number throughout the flow 
field. Changing At can be effective for grid spacings varied from very fine to very coarse. The 
formula of space varying time step of finite volume discretization and axisymmetric flow can be 
given as 

Generation of computational grid 

The test problem is chosen as transonic turbulent flows past a secant-ogive-cylinder-boattail 
projectile (SOCBT) at zero angle of attack. The calculated results are compared with experi- 
mental data.' ', l 2  The projectile model as shown in Figure 1 has a 3-caliber secant-ogive-part (or 
nose part) followed by a 2-3 caliber cylinder and 0-5-caliber 7-degree boattail. In  this study, two 
types of computational grid are established by using the hyperbolic solver.2" For both grids, the 
outer boundary of the flow domain is about 18 calibers from the projectile and an exponential 
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Figure 1. Geometry of secant-ogive-cylinder boattail projectile 

stretching function with minimum spacing of 0*00002 caliber from the solid boundary in the 
hyperbolic grid generations, which provides 2 3-grid point in the viscous sublayer. The first grid 
shown in Figure 2(a) is 106 x 60 O-type grid around the real projectile (i.e. without sting). The 
boundary for grid points of 1-26-42 -76 -106 are the point of nose, and connection points for 
cylinder, boattail and base region. The second grid shown in Figure 2(b) is incorporated with 
a sting of 0.2 base diameter to support the projectile model in the experiment. The grid in the 
longitudinal direction is wrapped around the projectile base and sting. There are 30 points 
between the base corner (5401 calibers) and the sting corner (5-807 calibers) in the longitudinal 
direction to approximate the sharp corner of the base. The size of this numerical grid is 142 x 60. 
Similarly, the boundary grid points are distributed as 1-26-42-76-106 142 for secant-ogive, 
cylinder, boattail and base-sting corner. 

Initial and boundary conditions 

Initial conditions are chosen to be a uniform flow field of free-stream conditions for mean flow 
equations. The initial conditions to start the k-e calculations are a uniform field of 2 per cent 
turbulence intensity: 

ko=  1-5(0.02~,)~,  ~ ~ = k ~ ’ ~ j O O l ,  

where v ,  is free-stream speed. 
The characteristic extrapolating technique is applied at the far field (q=qm,,) and outflow 

positions (i.e. 5 = tmaX). The convergence of the present Navier Stokes solver is reached faster by 
this method than setting a constant of free-stream value at the far-field boundary. No slip 
boundary condition is adopted on the solid surface of projectile and sting for velocities u and 21. 

The density and pressure on the wall are set to be equal to the values of node points next to the 
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Figure 2(a). A 106 x 60 hyperbolic 0-type grid 

Figure 2(b). A 142 x 60 hyperbolic wrapped around grid 

wall. It is assumed that the normal momentum equation suggested by StegerZ7 need not be solved 
because the point of 5 = 2  is very close to the wall compared to the grid space in longitudinal 
direction. Axisymmetrical condition at 5 = 1 is applied. 

For the k--E calculation, a zeroth-order extrapolation of the k--E values is used to specify 
conditions at the outflow and symmetric boundary. The turbulent viscosity pt  and values of k and 
E are zero or a small value of along solid walls. 
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RESULTS AND DISCUSSIONS 

Numerical computations have been made for turbulent flow past a secant-ogive-cylinder-boattail 
projectile at zero angle of attack and for free-streams Mach number of 0.94. The free-stream 
Reynolds number (defined as pm VmD/pz )  is 2,620,000 and is in agreement with the experimental 
condition. In addition to the mean flow results (such as surface pressure coefficients, velocity 
profiles on the boattail, the flow patterns surrounding the projectile and behind the base, Mach 
number contours), the turbulent properties including eddy viscosity pt, turbulent kinetic energy 
k and dissipation rate c: are obtained by four TVD schemes with two-grid systems. The 
convergence characteristic of the predictive schemes are also included and compared. 

Comparisons between diferent TVD schemes 

Surface presmre coefficient. ‘ The computed surface pressure coefficients along the projectile for 
Mach numbers of 0.94 for two-grid systems (i.e. with and without supported sting) are compared 
with the experimental Figure 3 shows the computed pressure coefficient by different 
TVD schemes of different order of accuracy for the case of real projectile of flat base and Mach 
number 0.94. The schemes are van Leer’s third-order MUSCL-type scheme, Yee’s second-order 
symmetric scheme, Harten’s second-order scheme and Roe’s first-order scheme. The computed 
values agree with experimental data except XILg0.6, but the results by Roe’s first-order scheme 
exhibit the largest difference at all locations. All TVD schemes underpredict pressure values near 
X / L  = 0-63. This defect is caused by the coarse grids distributed in this region. The results by two 
second-order TVD schemes and one third-order scheme are of very slight difference along the 
projectile surface. However, apparent difference for different schemes of different order of 
accuracy are observed for the surface pressure prediction on the base. This figure also illustrates 
that the predicted values of surface pressure on the base are converged to the value by higher- 

I I 

106x60 0 type grid ( f l a t  base) 
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Figure 1 Surface preysure coefficient distributions by different vchemes, M ,  =O 94 (base) 
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I I I I '1 O 5  

0 2  
M-0 94, Alpha 0 deg 
142x60 wrapped around grid (sting) 
Different schemes 

0. 0 
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1 -0 .3  

-0 R ' I I I I ' '-05 
0 5  0 6  0 7  0 8  09 1 0  1 5 0 

X/l> R/Rb 

Figure 4. Surface pressure coefficient distributions by different schemes, M ,  = 0.94 (sting) 

order schemes. Figure 4 shows the comparisons of the measured and predicted surface pressure 
coefficients by different schemes for the projectile with supporting sting. The computed results for 
the projectile with supporting sting indicate the same phenomena as that for the projectile with 
flat base. The pressure coefficients along the projectile surface are very close to the measured 
values for both the projectiles with and without supporting sting. However, it is also noted that 
the surface pressure coefficient for the projectile with supporting sting is slightly lower than that 
for the projectile with flat base near and after the shock on the boattail, which is favourable to the 
desired results. The small difference is due to the prediction of shock position which is slightly 
influenced by the flow patterns after the base. The flow field in the base region is complex, existing 
strong viscous/inviscid interaction, viscous/viscous interaction and regions of large recirculation. 
Accurate prediction of the flow field in the wake region is very difficult. Higher-order schemes 
should yield results of better accuracy. It shows that smaller variations of the pressure on the base 
if higher-order scheme is applied. 

Velocity profile. The velocity profiles at various axial positions for Mach number 0.94 and the 
projectile with flat base are shown in Figure 5 .  The schemes of second and third orders exhibit 
good agreement with each other at stations X / L  = 0-902,0.924,0.946 and 0.967, but give different 
profiles of the velocity at X / L  = 0-989. Roe's first-order scheme always yield different profiles from 
others. Figure 6 plots the velocity profiles of the projectile with supporting sting for the same 
Mach number. It indicates thatsecond or higher-order schemes give the almost same profiles at 
stations X / L  = 0902,0.924,0-946 and 0.967 and some different profiles at station X / L  = 0989. 
The station X/L=O.967 is located near the shock for the projectile. The different velocity profiles 
at X / L  = 0.967 for ditrerent base configuration implies that the predicted shock locations for 
projectiles with and without sting are slightly ahead of X / L  = 0.967 and slightly behind 
X / L  = 0-967. It can be resulted from the different order of accuracy schemes and different 
geometries of base yield different flow fields near shocks or rapidly changing region. The 



376 H. LIN AND C.-C. CHIENG 

Vclocity (rri/s) 

o M-0.91, Alpha=O deg  
A Exp.[ Miller] 

.. ...... .- Yee's symmetr ic (  2nd order )  Roe(1st order)  
Harten(2rid order)  ~ ~ ~ ~ . .  ~ Van Leer(3rd order )  

Figure 5. Velocity profiles at various axial station M ,  =0,94 (base) 

36 1- I 

Velocity (rn/s) 
M-0.94, AlphaZO deg 142x60 wrapped a round  grid (s t ing)  

A Exp. [ Miller] 0 Exp. [ Danberg] 

Roe( 1st order )  
Harten(2nd order )  ~ ~ ~ ~ . . . ~ .  Van Leer(3rd order) 

. , , , . .. . . . . . . . . , - Yee's syrnmetric(2nd order )  - - . -. - . . 

Figure 6. Velocity profiles at various axial station M,=0.94 (sting) 
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disagreement with measurement at X / L  = 0.924, which is located near the expansion fan, may be 
related to errors in the reduced measurement data. 

Turbulent quantities. The turbulent kinetic energy k,  the rate of turbulent dissipation E and 
eddy viscosity p t  profiles along the projectile are of interest. Figures 7 and 8 plot the profiles of 
turbulent kinetic cnergy for projectiles with flat base and with supporting sting, respectively. 
These two figures indicate that results can be categorized in two groups: results by first-order 
scheme and by higher-order schemes. The profiles generally have peak values near y +  =40 and 
decay rapidly after y +  > 5000. The magnitude of turbulent kinetic energy is increased due to the 
expansion fan (comparing profiles at X / L  = 0 8 7 0  and 0.924) and slightly decreased due to shock 
(comparing profiles at  X/L=0.967 and 0.989 in Figures 7 and 8). Figures 9 and 10 show the 
profiles of turbulent energy dissipation rate E at various stations for different base configurations. 
They indicate that the peak value by Roe’s scheme is apparently smaller than those by another 
schemes at five stations. Comparing the profiles of turbulent kinetic energy, the computed profiles 
of turbulent dissipation rate is more dependent on the selection of numerical schemes. Figures I 1 
and 12 plot the profiles of turbulent viscosity p ,  which are important to the computation of mean 
flow field directly. The results can be divided into two groups also: by first-order scheme and by 
higher-order schemes. Discrepancies arc clearly shown at stations near larger gradients such as 
near-expansion fan, shock and base corner for higher-order schemes. 

Mach number contour. The Mach number contours before the base are very similar for two 
different grid systems and four different TVD schemes. Two represented Mach number contours 
are shown only in the paper. Figures 13 and 14 show the Mach number contours by third-order 

Figure 13. Mach number contour for M ,  =0.94 (van Leer’s MUSCL, base) 
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Figure 14. Mach number contour for M ,  ~ 0 . 9 4  (van Leer's MUSCL, sting) 

Figure 15(a). Particle tracing plot for M,=094 (Roe, base) 

- I '  
__.__ 

"-_- - L L  

Figure 15(b). Partlcle traclng plot for M ,  =094 (Yee's symmetric, base) 
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Figure 15(c). Particle tracing plot for M ,  =094 (Harten, base) 

__----__l_l_l_ Jl 
Figure 16(a). Particle tracing plot for M,=0.94 (Roe, sting) 

. - - __ __ - - -- - I_ 

Figure 16(b) Particle tracing plot for M, =0.94 (Yee’s symmetric, sting) 

MUSCL type TVD scheme for the projectile with flat base and with suppporting sting. Very 
minor difference is observed before the base, but the patterns after the base is completely changed 
to a much more complicated configuration if the extra supporting sting exists. The contour 
configurations starting from the shock on the boattail is also influenced and it gives slightly 
different values of pressure as discussed in the previous section. 
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1 
bigure 16(c). Particle tracing plot for M ,  =0.94 (Harten, sting) 

Figure 16(d). Particle tracing plot for M ,  =094 (van Leer’s MUSCL, sting) 

RecircuEation zone. Figures 15(a) 15(d) show the particle tracing plots in the base region for 
the projectile with flat base for Mach number 0.94. I t  is seen that the sizes of recirculation zone are 
apparently different by the four TVD schemes of different order of accuracy but the centres of the 
recirculation zones are located nearly the same position for higher-order schemes. If the extra 
supporting sting is attached to the projectile, the size of the recirculation zones are largely reduced 
(Figures 16(a)-16(d)). It is observed that the predicted size by Roe’s first-order scheme is much 
smaller than those by higher-order schemes. The secondary vortex regions for the grid system 
with supported sting are concerned. Figures 16(a)- 16(d) indicate that the secondary vortex 
region by Roe’s scheme is smaller than those by another schemes. It can be resulted from the 
larger numerical diffusions and the smaller vortex in the recirculation zone by the lower-order 
scheme. 

Iteration history. The iteration histories with two-grid systems are plotted in Figures 17 and 
18. The L2 residual is calculated at each iteration step by the following formulas: 

Residual = C [(AQI“’/J)’ + (AQ(2”)J)2 +(AQ$”/J)2 + (AQ$‘)/J)21/Nvi,,t 
i =  1, Npoint 

L2 residual =log, [SQRT(residual)]. 

It is found that the convergent rate of Roe’s first-order scheme is the fastest among the four TVD 
schemes and that of the third-order scheme is the slowest. All curves exhibit some degree of 
oscillations within 12000 iteration steps. The oscillations may be amplified by the strong 
non-linear property of the two-equation model of turbulence. The L2 residual for all TVD 
schemes can be reduced over four orders after 7000 iterations and the convergence is actually 
achieved when five orders are reduced. It means that the convergent rate is very slow if the two 
equation model of turbulence is implemented. Figure 18 plots the iteration histories for the 
projectile with supporting sting. Comparing Figures 17 and 18 shows that larger oscillations and 
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Figure 17. Rate of mean flow residual convergence for M ,  = 0-94 (base) 
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Figure 18. Rate of mean flow residual convergence for M ,  =094 (sting) 
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T 
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106x60 0-type grid (flat base) 
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Figure 14. Rate of mean flow residual convergence for M , ,  =0.94 (base) 

slightly slower converging rate are observed if the supporting sting is adopted to the projectile 
base. 

Figure 19 compares the itcration histories if the present AD1 method or the LU method 
proposed by Shih and ChyuZ8 is applied. It shows that the present AD1 method has the faster 
convergent rate than their method has if the same time step is given. 

CONCLUSIONS 

Reynolds averaged Navier-Stokes equations with k-s two-equation model of turbulence are 
successfully solved by various TVD schemes for transonic turbulent flow over projectiles with 
and without supporting sting. There are several conclusions which can be made: (1) Very slight 
differences of the surface pressure coefficients and the profiles of velocity and turbulent quantities 
on the boattail are observed for the projectile with and without the supporting sting. (2) Most of 
the computed results can be categorized into two groups: second- and third-order schemes and 
first-order scheme. Apparent difference is displayed for these two groups. Small discrepancies are 
obtained for the schemes of second- or higher-order and the discrepancies are found at the 
locations of high gradients such as shock or base corner. It implies that TVD schemes of 
second-order accurate is adequate to obtain reasonable flow fields around the projectile (but not 
the base region). (3) Flow patterns are changed significantly for the base flow computations when 
TVD schemes of different orders are employed. Different-order schemes will give different sizes of 
the recirculation zone, the pressure coefficients on the base and, thus, the drag calculation. (4) The 
pressure coefficients on the base are varied if different TVD schemes are applied. It is found that 
the computed results of flow patterns and base pressure coefficients are converged from that by 
first-order scheme to higher-order schemes. It indicates that third- or higher-order scheme is 
needed for the computation of accurate base flow. (5) The convergence rate for the projectile with 
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flat base is faster than that for the projectile with supporting sting. The higher-order schemes need 
more iteration steps to reach convergence. 
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APPENDIX: NOMENCLATURE 

flux vcctors in transformed co-ordinates 
Jacobian 
turbulent kinetic energy 
length of the body 
Mach number 
viscous flux vector in transformed co-ordinates 
production rate of turbulent kinetic energy 
Prandtl number 
vector of dependent variables 
right cigenvector matrix 
Reynolds number 
turbulent Reynolds number 
viscous flux vector in transformed co-ordinates 
time 
axial and normal velocity components 
contravariant velocities in transformed co-ordinates 
distance from projectile nose along the axis of symmetry 
axial and radial co-ordinate 
normal distance from the solid wall 
dimensionless normal distance from the solid wall 

differential characteristic variable vector 
turbulent dissipation rate 
ratio of specific heats 
modified eigenvalues for upwind TVD scheme 
small value for entropy correction function Y ( z )  
parameter for MUSCL type TVD scheme 
effective, molecular and turbulent viscosity, p = p, + pt 
transformed co-ordinates 
density 
modified flux function for upwind and symmetric TVD scheme 

located at the interface of cell 
located on centroid of cell 
free-stream value 
laminar 
turbulent 

time-step level 
approximated numerical flux 
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any variable including metric terms 
T transpose 
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